Skip to main content
Scientific Computing and Machine Learning
SCML
Scientific Computing and Machine Learning
Main navigation
Home
People
Principal Investigators
Research Scientists and Engineers
Postdoctoral Fellows
Students
All Profiles
Events
All Events
Events Calendar
News
Pages
Publications
ISL Publications Repository
Research Output
KAUST Innovation Hub in Shenzhen
Opportunities
Monte Carlo
Multigrid Monte Carlo Revisited: Theory and Bayesian Inference
Professor Robert Scheichl, University of Heidelberg
May 5, 11:00
-
12:00
B1 L3 R3119
Multigrid
Monte Carlo
Abstract The fast simulation of Gaussian random fields plays a pivotal role in many research areas such as Uncertainty Quantification, data science and spatial statistics. In theory, it is a well understood and solved problem, but in practice the efficiency and performance of traditional sampling procedures degenerates quickly when the random field is discretised on a grid with spatial resolution going to zero. Most existing algorithms, such as Cholesky factorisation samplers, do not scale well on large-scale parallel computers. On the other hand, stationary, iterative approaches such as the